PER CAPITA GREENHOUSE GAS (GHG) EMISSIONS

Nepal’s GHG emissions (incl. land use) increased at the rate of 16.4% between 2012 and 2017.

Data for 2017: Sources: Enerdata, 2020; United Nations Department of Economic and Social Affairs Population Division, 2020; Gutschow et al., 2019

NOT ON TRACK FOR A 1.5°C WORLD

Nepal would need to reduce its emissions to below 102 MtCO₂e by 2030 and to below 128 MtCO₂e by 2050 to be within its emissions allowances under a ‘fair-share’ range compatible with a global 1.5°C pathway. The CAT rates Nepal’s updated, conditional NDC as 2°C compatible due to its conditionality. All figures exclude land use and are based on pre-COVID-19 projections.

KEY OPPORTUNITIES FOR ENHANCING CLIMATE AMBITION

- **DEVELOP URBAN PUBLIC TRANSPORT**
 - Development of urban public transport systems, infrastructure for non-motorised mobility and incentives for e-vehicles will reduce air pollution and budget deficits caused by petroleum imports.

- **PRIORITY STORAGE-TYPE HYDRO PLANTS**
 - As run-of-river hydropower generation is sensitive to climatic variations, prioritising storage-type hydro plants and harnessing solar energy potential would help improve diversification of the energy mix and energy security.

- **COMMUNITY-BASED FOREST PROTECTION**
 - Scaling up Community-based Forest Management will further improve Nepal’s already significant land carbon sink capacity.

RECENT DEVELOPMENTS

- **NEPAL’s 2021/22 budget includes plans to replace fossil fuel-based light vehicles with electric vehicles by 2031 and provides tax incentives for e-vehicles.**

- **NEPAL’s 2020 NDC includes quantifiable targets for the shortterm (2025) and medium-term (2030) for energy, waste, and agriculture, forestry and other land use. Nepal has also strengthened its plans for adaptation against climate change.**

- **In 2019, the 5% share of non-biomass renewables in total energy consumption was well short of the 20% by 2020 it pledged in its first NDC.**

CORONAVIRUS RECOVERY

The government’s response to the pandemic focuses on building advanced health care systems and infrastructure and allocating funds to vaccine all people at risk.

One of the main priorities of the 2021/22 budget is to uplift economic activities through relief packages to families affected by COVID-19 and provide incentives, subsidies and rescue packages to the private sector.

Nepal’s adaptation priorities – agriculture and food security, forest management, biodiversity and watershed conservation; renewable energy, health for all, and disaster risk reduction and management – are also aimed at providing jobs to unemployed women and other disadvantaged groups.
SOCIO-ECONOMIC CONTEXT

Human Development Index

The Human Development Index reflects life expectancy, level of education, and per capita income. Nepal ranks medium.

Data for 2018. Source: UNDP, 2019

Gross Domestic Product (GDP) per capita

$1,085
PPP constant 2015 international$

Nepal GDP per capita reached 1,084.96 in July 2020, but overall experienced a sharp decrease from +6.6% in 2019 to -2.1% in 2020 (vs. previous year)

Data for 2019. Source: United Nations Department of Economic and Social Affairs Population Division, 2020

JUST TRANSITION

Nepal’s 2019 National Climate Change Policy, aims at building climate-resilient society and ecosystems that are at risk and promote green economy through low carbon emission development, environmental conservation, and pursuing human and sustainable development.

The ILO estimates that nearly four in every five workers most vulnerable to disruption are in the construction, manufacturing and trade sectors. COVID-19 pandemic has severely affected livelihoods in Nepal, and considerations of a Just Transition should underpin the process of implementing a green recovery.
1. ADAPTATION
ADDRESSING AND REDUCING VULNERABILITY TO CLIMATE CHANGE

Increase the ability to adapt to the adverse effects of climate change and foster climate resilience and low-GHG development.

Nepal ranked 9th most affected country on the Climate Risk Index for 1999-2018.

More than 80% of disasters are a result of droughts, floods, landslides, extreme temperatures and Glacial Lake Outbreak Floods.

From 1998-2017, Nepal reported 235 annual average fatalities related to climate change, equating to an annual average loss of USD 230.83m.

ADAPTATION NEEDS

Climate Risk Index

Impacts of extreme weather events in terms of fatalities and economic losses that occurred. All numbers are averages (1998-2017).

<table>
<thead>
<tr>
<th>Annual weather-related fatalities</th>
<th>Annual average losses (USD mn PPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>235 deaths</td>
<td>0.87 deaths per 100,000 inhabitants</td>
</tr>
<tr>
<td>PER 100,000 INHABITANTS</td>
<td>PER UNIT GDP (%)</td>
</tr>
</tbody>
</table>

Source: Germanwatch, 2019

CORONAVIRUS RECOVERY

The impacts of COVID-19 on the economy and mobility may hinder Nepal’s response to climate change. The government leads the pandemic response but capacity is stretched, requiring international support. The revised COVID recovery plan plan is prepared by the Humanitarian Country Team, in collaboration with the government. The response plan includes a significant health component, highlighting needs around coordination planning and monitoring, protection, risk communication and community engagement, food security, water, sanitation and hygiene nutrition, education, shelter and logistics.
ADAPTATION POLICIES

National Adaptation Strategies

<table>
<thead>
<tr>
<th>Document name</th>
<th>Publication year</th>
<th>Fields of action (sectors)</th>
<th>M&E process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal Climate Change Policy 2019</td>
<td>2011</td>
<td>Agriculture</td>
<td>Biodiversity</td>
</tr>
</tbody>
</table>

Nationally Determined Contribution (NDC): Adaptation

<table>
<thead>
<tr>
<th>Targets</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not mentioned</td>
<td>A National Adaptation Plan will be formulated in 2021 and updated every 10 years.</td>
</tr>
<tr>
<td></td>
<td>1. Vulnerability and risk assessment will be carried out every five years.</td>
</tr>
<tr>
<td></td>
<td>2. Climate-resilient and gender-responsive adaptation plans will be prepared and implemented in all 753 local governments by 2030.</td>
</tr>
<tr>
<td></td>
<td>3. A strategy and action plan on gender-responsive climate-smart technologies and practices will be prepared and implemented by 2030.</td>
</tr>
<tr>
<td></td>
<td>4. The climate-sensitive disease surveillance system will be strengthened by 2025.</td>
</tr>
<tr>
<td></td>
<td>5. Public weather services will be strengthened and established.</td>
</tr>
<tr>
<td></td>
<td>6. A multi-hazard monitoring and early warning system covering all seven provinces will be established by 2030.</td>
</tr>
<tr>
<td></td>
<td>7. A climate finance strategy will be formulated by 2022.</td>
</tr>
</tbody>
</table>

Reference: Government of Nepal, 2020
2. MITIGATION
REDDUCING EMISSIONS TO LIMIT GLOBAL TEMPERATURE INCREASE

Hold the increase in the global average temperature to well below 2°C above pre-industrial levels and pursue efforts to limit to 1.5°C, recognising that this would significantly reduce the risks and impacts of climate change.

EMISSIONS OVERVIEW

Nepal’s GHG emissions have increased by 81% in 27 years from a low base in 1990 to 42 MtCO₂e in 2017. Projections show that implementation of Nepal’s current policies would keep its emissions aligned to a 1.5 compatible range.

In 2030, global CO₂ emissions need to be 45% below 2010 levels and reach net zero by 2050. Global energy-related CO₂ emissions must be cut by 40% below 2010 levels by 2030 and reach net zero by 2060.

Source: Rogelj et al., 2018

GHG emissions across sectors and CAT 1.5°C ‘fair-share’ range (MtCO₂e/year)

Nepal’s emissions (excl. land use) have increased by 81% between 1990 and 2017 to 42 MtCO₂e. When considered by category, the biggest increase by far is in the agriculture and energy sectors. The AFOLU sector contributes more than 80% of the total GHG emissions in Nepal followed by the energy, transport, waste and industrial processes sectors.

Nepal’s 2020 sectoral NDC targets have been conservatively estimated to reduce emissions by 1.9-5.6 MtCO₂e/yr leading to emissions of 69-76 MtCO₂e/yr by 2030 (excl. land use). This does not take into account land use – a substantial sink for the country. The emissions range estimated for Nepal’s conditional target is 1.5°C compatible and within its ‘fair-share’ range. The conditionality of its target, however, renders its NDC only 2°C compatible indicating that the country should receive international support to further reduce the emissions gap.

Source: Climate Action Tracker, 2019; Gütschow et al., 2019; Pradhan et al., 2017

Energy-related CO₂ emissions by sector

The largest driver of overall GHG emissions are CO₂ emissions from fuel combustion. In Nepal, energy-related CO₂ emissions from the transport sector are the largest contributor at 50%, followed by the industrial and building sectors with 27% and 15% respectively.

Reference: Climate Action Tracker, 2020

* ‘Other energy-related sectors’ covers energy-related CO₂ emissions from extracting and processing fossil fuels. Due to rounding, some graphs may sum to slightly above or below 100%.

CORONAVIRUS RECOVERY

The government’s COVID-19 response has so far not considered green recovery. The impacts of COVID-19 on the economy and mobility may, however, hinder mitigation-related projects and programmes. By shutting down the economy, the pandemic has unsustainably reduced emissions, with the most recent Climate Action Tracker assessment showing that emissions in 2020 would be 0.7-2.4% lower than in 2019. Nepal has not yet put in place any recovery measures which could be considered either high or low carbon measures.

Reference: Climate Action Tracker, 2020
ENERGY OVERVIEW

Fossil fuels make up 23% of Nepal’s energy mix, and biomass accounts for 72%. As the share of renewables grows and electrification of end-sectors increases, the carbon intensity of the energy sector is expected to decline.

1.5°C COMPATIBILITY

The share of fossil fuels globally needs to fall to 67% of global total primary energy by 2030 and to 33% by 2050, and to substantially lower levels without Carbon Capture and Storage. Source: Rogelj et al., 2018

Energy Mix

This graph shows the fuel mix for energy supply in Nepal, including energy used for electricity generation, heating, cooking, and transportation up to 2019. Residential biomass and waste combustion used for cooking and heating, especially in the rural areas— together account for 72% of Nepal’s energy mix. Oil and coal account for 23% of this share. Renewables, almost exclusively hydro, make up only 5% of the energy mix.

Solar, Wind, Geothermal, and Biomass Development

Energy generation from non-residential biomass accounts for 1% of Nepal’s energy. The share of renewables other than large hydropower and residential biomass in total energy supply combustion decreased by 13% between 2013-2018. Nepal has some solar (not reflected in the data to 2019). The Nuwakot Solar Power Station and Butwal Solar PV Project partially came online in 2020 – but neither runs at full capacity. The Mithila 2 Solar PV Station will come online in 2021.
Carbon Intensity of the Energy Sector

Carbon intensity shows how much CO₂ is emitted per unit of energy supply. In Nepal, carbon intensity has increased steadily since 1990. This level reflects the continuously high share of biomass and fossil fuels in the energy supply.

Source: Enerdata, 2020

Energy supply per capita

<table>
<thead>
<tr>
<th>Energy supply per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 GJ/capita</td>
</tr>
</tbody>
</table>

Data for 2019. Sources: Enerdata, 2020; The World Bank, 2019

The level of energy use per capita is closely-related to economic development, climatic conditions and the price of energy. Energy use per capita in Nepal is 21 GJ/capita, and has increased 16.1% between 2014-2019 from a low base.

Energy intensity of the economy

<table>
<thead>
<tr>
<th>Energy intensity of the economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.02 TJ/PPP USD2015 millions</td>
</tr>
</tbody>
</table>

Data for 2018. Sources: Enerdata, 2020; The World Bank, 2018

This indicator quantifies how much energy is used for each unit of GDP. This is closely related to the level of industrialisation, efficiency achievements, climatic conditions or geography. Nepal’s economy has become slightly more energy intensive over the five-year period to 2018.

Energy intensity of the economy: 5-year trend (2013-2018)

<table>
<thead>
<tr>
<th>Energy intensity of the economy: 5-year trend (2013-2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+16.1%</td>
</tr>
</tbody>
</table>
Nepal does not produce electricity from fossil fuels. While close to all electricity in the country is from renewable sources, some fossil fuel-generated electricity is imported from India.

Electricity has 0% share in energy-related CO₂ emissions.

Coal and decarbonisation

Worldwide, coal use for power generation needs to peak by 2020 and between 2030 and 2040, all the regions of the world need to phase out coal-fired power generation. Electricity generation has to be decarbonised before 2050, with renewable energy the most promising alternative.

Source: Enerdata, 2020

Sources: Climate Analytics, 2016; Climate Analytics, 2019; Rogelj et al., 2018

STATUS OF DECARBONISATION

Electricity mix

Nepal produces all its electricity using renewables. Hydro dominates at 99.8%, followed by small amounts of solar and wind.

![Electricity generation chart showing 100% renewables](chart.png)

Source: Enerdata, 2020

Due to rounding, some graphs may sum to slightly above or below 100%.

Share of renewables in power generation

(incl. large hydro)

100%

Source: Enerdata, 2020

The share of renewables over 5 years has remained 100% thus there is no change in the trend.
For each kilowatt hour of electricity produced in Nepal, 0 gCO₂ is emitted.

POLICY ASSESSMENT

Renewable energy in the power sector

Power generated in Nepal comes almost completely from hydropower sources and will continue to do so in the future. In its 2020 NDC, the government aims to increase clean energy generation from approximately 1,400 MW to 15,000 MW, of which 5-10% will be generated from mini and micro-hydropower, solar, wind and bio-energy (only 5,000 MW are not conditional on provision of international support). The country imports some fossil-fuel generated electricity from India. However, as more hydropower plants come online, this share is decreasing.

Reference: own evaluation based on Government of Nepal, 2020
Nepal’s vehicle fleet is rapidly increasing and is almost exclusively reliant on petroleum products. Electric vehicles currently account for only about 1%. However, as the country’s renewable electricity generation capacity increases, it aims to promote electrification of its end-use sectors, including the transportation sector.

Domestic share in energy-related CO₂ emissions from transport sector.

Source: Enerdata, 2020

The global share of low-carbon fuels in the transport fuel mix must increase to about 60% by 2050.

Source: Rogelj et al., 2018

STATUS OF DECARBONISATION

Transport energy mix

Nepal’s transport sector is driven almost entirely by oil at 99.99%. Electricity provides a miniscule 0.01% of this sector’s energy consumption.

Source: Enerdata, 2020

Due to rounding, some graphs may sum to slightly above or below 100%.

Transport emissions per capita

Data for 2018. Source: Enerdata, 2020

0.19 tCO₂/capita

+123% 5-year trend (2013-2018)
Aviation emissions per capita

0.02 tCO₂/capita

Aviation emissions: 5-year trend (2012-2017)

+71.1%

Data for 2017. Source: Enerdata, 2020

POLICY ASSESSMENT

Phase out fossil fuel cars

High

According to Nepal’s 2020 NDC, sales of electric vehicles will cover 90% of all private passenger vehicle sales (including two-wheelers) and 60% of all four-wheeler public passenger vehicle sales by 2030 (100% by 2035 would be 1.5°C compatible). The current share of electric vehicles is approximately 1%. Tax incentives to improve market penetration of electric vehicles, scaling up the construction of charging infrastructure, and upgrading the existing power transmission and distribution lines are needed.

Phase out fossil fuel heavy-duty vehicles

Low

Nepal has no plans to phase out fossil fuel-based heavy-duty vehicles. The emission standard only applies to light-duty vehicles.

Modal shift in (ground) transport

Medium

Nepal’s topography and exposure to climate change risks plus a lack of technical expertise, policy, legal or operational standards for the construction and operation of rail transport, make the introduction of a railway network challenging. Nevertheless, the 2020 NDC aims to develop 200 km of electric railway to support public commuting and mass transportation of goods.

Nepal’s Fifteenth Plan (FY 2019/20-2023/24) envisions scaling up railway tracks from 42 km in fiscal year 2018/2019 to 348 km by 2023/2024, which would connect multiple existing sections of railway to the planned East-West Railway.

Nepal further aims to increase electric public transport and the building of bicycle and pedestrian lanes.

Nepal’s direct building emissions - counting heating, cooking but not electricity use – make up 13% of total energy-related emissions.

Building emissions can occur directly (burning fuels for heating, cooking, etc) and indirectly (grid-electricity for air conditioning, appliances, etc). Nepal’s electricity produces no energy-related CO₂ emissions.

Global emissions from buildings need to be halved by 2030, and be at 80-85% below 2010 levels by 2050, mostly through increased efficiency, reduced energy demand and electrification in conjunction with a complete decarbonisation of the power sector.

Data for 2018. Source: Enerdata, 2020

STATUS OF DECARBONISATION

Building emissions per capita
(incl. indirect emissions)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+95.8%</td>
</tr>
</tbody>
</table>

Building-related emissions per capita reflect climatic conditions and also the ratio of square footage per person. Nepal’s buildings emissions have increased 95.8% in the five years from 2014 to 2019, but from a very low base.

Source: Enerdata, 2020

POLICY ASSESSMENT

Near zero energy new buildings

While the National Urban Development Strategy (2017) outlined plans to prepare models and guidelines for the energy efficient construction of buildings, Nepal has no building energy codes or standards as of 2020. As building emissions grew by 96% from 2014-2019 and will likely continue, a building code should be an opportunity.

References: own evaluation based on Government of Nepal, 2020; Ministry of Urban Development, 2017

Renovation of existing buildings

Nepal has no incentives nor strategy for the renovation of buildings. In its 2020 NDC, the government aims to adopt national building codes by 2030 (conditional upon international support). It is unclear whether these would also apply to existing buildings.

References: own evaluation based on Government of Nepal, 2020
Industry-related emissions make up just over a quarter of energy-related CO₂ emissions in Nepal and these emissions have grown 24% between 2012-2017.

Industrial emissions need to be reduced by 65-90% from 2010 levels by 2050. Source: Rogelj et al., 2018

INDUSTRY SECTOR

Emissions from energy in the industrial sector

Data for 2018.
Source: Enerdata, 2020

STATUS OF DECARBONISATION

Industry emissions intensity

1.38

\(\text{tCO}_2/\text{USD2015 GVA}\)

Data for 2017. Sources: Enerdata, 2020; Gütscow et al., 2019

Carbon intensity of cement production

614

\(\text{kgCO}_2/\text{tonne product}\)

Steel production and steelmaking are significant GHG emission sources and challenging to decarbonise.

Data for 2016. Source: World Steel Association, 2018

Carbon intensity of steel production

1,900

\(\text{kgCO}_2/\text{tonne product}\)

POLICY ASSESSMENT

Energy Efficiency

Nepal’s National Energy Efficiency Strategy (2018) aims to double the average improvement rate of energy efficiency from 0.84% per year to 1.68% per year by 2030. While an industry-specific target does not exist, the strategy strives to promote the use of energy efficient equipment and to conduct energy audits in the industrial sector. The Industrial Enterprises Act (2020) includes tax deductions for enterprises investing in energy efficient equipment.

References: own evaluation based on Ministry of Energy, Water Resources and Irrigation, 2018; Ministry of Industry Trade and Commerce, 2020
LAND USE SECTOR

Emissions from changes in the use of the land

Nepal maintains around 40% of its land as forests – a substantial sink for its emissions. Community forests in Nepal are well-known for their participatory management practices that improve forest protection and regeneration. To stay within the 1.5°C limit, Nepal needs to improve management in its other forests and expand forest area, where possible. It also needs to curtail illegal logging, encroachment, and road construction.

Global tree-cover loss

No data available

Please note that the format of these profiles is to use a common source of data for each indicator. For this indicator we use “Annual tree-cover loss by dominant driver” from the World Resources Institute’s Global Forest Watch online tool.

Our Nepal country analysts (at Climate Analytics) did not think that this source provided an accurate picture of tree-cover loss in Nepal – hence the statement above.

AGRICULTURE SECTOR

Emissions from agriculture

Nepal’s agricultural emissions are mainly from digestive processes in animals, livestock manure, and rice cultivation. Agriculture, a prominent sector in the country’s economy, employs mostly rural smallholder farmers practicing subsistence agriculture.

Methane emissions (mainly enteric fermentation) need to decline to 10% by 2030 and by 35% by 2050 (from 2010 levels). Nitrous oxide emissions (mainly from fertilisers and manure) need to be reduced by 10% by 2030 and by 20% by 2050 (from 2010 levels).

Source: Rogelj et al., 2018

POLICY ASSESSMENT

Target for net-zero deforestation

In its 2020 NDC, Nepal aims to maintain 45% of the total area of the country under forest cover by 2030 (including other wooded land limited to less than 4%). Current forest cover is approximately 44.74% of which 4.38% is other wooded land. Nepal also aims to sustainably manage a significant portion of its forest area. The country currently implements its REDD+ strategy which was developed in 2018.

Emissions from agriculture (excluding energy)

In Nepal, the largest sources of GHG emissions in the agricultural sector are digestive processes in animals (56%), livestock manure (23%), and rice cultivation (14%). A shift to organic farming and more efficient use of fertilisers – which are energy and water intensive to produce – can help reduce emissions.

Due to rounding, some graphs may sum to slightly above or below 100%.

Source: FAO, 2019
MITIGATION: TARGETS AND AMBITION

The combined mitigation effect of nationally determined contributions (NDC) submitted by September 2020 is not sufficient and will lead to a warming of 2.7°C by the end of the century. This highlights the urgent need for all countries to submit more ambitious targets by 2020, as they agreed in 2015, and to urgently strengthen their climate action to align to the Paris Agreement’s temperature goal.

AMBITION: 2030 TARGETS

Nationally Determined Contribution (NDC): Mitigation

<table>
<thead>
<tr>
<th>Targets</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal’s 2020 NDC has emissions reduction targets in some key sub-sectors. The CAT conservatively estimates that through NDC implementation Nepal will reduce its total emissions by 1.9 to 5.6 MtCO₂e/yr by 2030.</td>
<td>A range of policy measures have been provided for key sectors.</td>
</tr>
</tbody>
</table>

Climate Action Tracker (CAT) evaluation of NDC and actions

NDCs with this rating are consistent with the 2009 Copenhagen 2°C goal and therefore fall within a country’s “fair-share” range, but are not fully consistent with the Paris Agreement long-term temperature goal. If all government NDCs were in this range, warming could be held below, but not well below, 2°C and still be too high to be consistent with the Paris Agreement 1.5°C limit.

Nepal submitted its second NDC on December 8, 2020, strengthening the country’s 2030 targets and transparency, as well as including more quantifiable targets, broader sectoral coverage and a reference to a net zero target. Based on the information provided, the NDC target is rated “2°C compatible”. The NDC target would be “1.5°C ‘fair-share’ compatible” if it were unconditional.

TRANSPARENCY: FACILITATING AMBITION

Countries are expected to communicate their NDCs in a clear and transparent manner in order to ensure accountability and comparability.

The NDC Transparency Check has been developed in response to Paris Agreement decision (1/CP.21) and the Annex to decision 4/CMA.1. While the Annex is only binding from the second NDC onwards, countries are “strongly encouraged” to apply it to updated NDCs, due in 2020.

AMBITIOn: LONG-TERM STRATEGIES

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2050 target</td>
<td>Net-zero GHG emissions</td>
</tr>
<tr>
<td>Interim steps</td>
<td>Strategy not published at time of print</td>
</tr>
<tr>
<td>Sectoral targets</td>
<td>Strategy not published at time of print</td>
</tr>
<tr>
<td>Net-Zero target</td>
<td>Yes</td>
</tr>
<tr>
<td>Net-Zero year</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

The Paris Agreement invites countries to communicate mid-century, long-term, and low GHG emissions development strategies by 2020. Long-term strategies are an essential component of the transition toward net-zero emissions and climate-resilient economies.
3. FINANCE
MAKING FINANCE FLOWS CONSISTENT WITH CLIMATE GOALS

Make finance flows consistent with a pathway towards low-GHG emissions and climate-resilient development.

Nepal’s total LPG consumption subsidy was USD 40-48m for 2019, but has no explicit carbon price.

Investment in green energy and infrastructure needs to outweigh fossil fuel investments by 2025.

Source: Rogelj et al., 2018

FISCAL POLICY LEVERS

Fiscal policy levers raise public revenues and direct public resources. Critically, they can shift investment decisions and consumer behaviour towards low-carbon, climate-resilient activities by reflecting externalities in the price.

The IEA does not include Nepal in its fossil fuel consumption dataset.

The government built 69.5 km of petroleum pipeline from Motihari (Bihar) of India to Amlekhganj (Bara) of Nepal under the G2G agreement between Government of Nepal and Government of India. The project, intended to facilitate petroleum product imports was inaugurated in September 2019 and had a total cost of NRs 4.4bn (USD 39m *), of which 27.27% (USD 10.7m) is on Nepal and the rest is the investment from the Government of India.

On the consumption side, until 2014, Nepali state-owned enterprise Nepal Oil Corporation (NOC) incurred losses on petroleum fuel sales almost annually, which was paid/subsidised by the Government of Nepal. In 2014, NOC adopted an automated market-based pricing system, which stopped annual losses from petrol and diesel from incurring. But NOC still makes a loss on LPG cylinders so this can be considered as cross-subsidy from the government to the LPG. LPG is mainly used in Nepal for cooking purposes, and NOC (sole importer and distributor of petroleum products in the country) has been reporting monthly losses fluctuating between NRs 380m to NRs 450m, depending on the price imposed by the Indian Oil Corporation (the sole fuel products supplier in Nepal). This amounted to a total LPG consumption subsidy of USD 40-48m for 2019. Early in 2020, though, the Nepali government announced its intentions to remove the LPG subsidy and turn it into an electricity subsidy to compensate for the expected increase in gas prices, as well as to distribute 10,000 induction stoves to households at subsidised rates.

Sources: Government of Nepal, 2019; IEA, 2021; Poudel, 2020; Redonda et al., 2021

Carbon pricing and revenue

No explicit carbon pricing is applied in Nepal, nor is any currently under consideration. However, in 2007/2008 the Government of Nepal introduced a pollution tax on petrol and diesel; in 2020, the tax has been raised from NRs 0.5 (0.4 USD cents **) to NRs 1.50 (1.2 USD cents) per litre of diesel and petrol. In the fiscal year 2019/2020, Nepali consumers have paid a total of NRs 2.97bn (USD 25m) in pollution tax.

Source: New Business Age, 2021

* An exchange rate of 0.0089 was used for all 2019 calculations to convert Nepali NRs into USD (https://www.poundsterlinglive.com/best-exchange-rates/us-dollar-to-nepalese-rupee-exchange-rate-on-2019-12-31)

** An exchange rate of 0.0085 was used for the 2020 calculations to convert Nepali NRs into USD (https://www.poundsterlinglive.com/best-exchange-rates/best-us-dollar-to-nepalese-rupee-history-2020)
Governments steer investments through their public finance institutions, including via development banks, both at home and overseas, and green investment banks. Developed countries also have an obligation to provide finance to developing countries and public sources are a key aspect of these obligations under the UNFCCC. Nepal introduced a climate change budget code in 2012 that enables ministries to prioritise and track activities reducing climate change impacts, with increasing budgets. The Ministry of Finance also introduced the Climate Change Financing Framework in 2017 in order to plan and manage climate finance and track its expenditure.

Source: International Institute for Environment and Development, 2014

FINANCIAL POLICY AND REGULATION

Through policy and regulation, governments can overcome challenges to mobilising green finance, including real and perceived risks, insufficient returns on investment as well as capacity and information gaps.

Nepal released the “Guideline on Environmental and Social Risk Management (ESRM) for Banks and Financial Institutions” on May 28, 2018. The ESRM guidelines launched by Nepal Rastra Bank (NRB) set down standards for the identification, assessment, and management of environmental and social risks. Among others, the guidelines also provide a reporting template for all banks to report to NRB on sustainability performance and include coal-fired power plants in its exclusions list. NRB started its journey towards a sustainable banking system in 2014 when it joined the IFC-supported Sustainable Banking Network (SBN). The ESRM guidelines have been drafted by experts at IFC and NRB using global standards, including IFC’s Performance Standards and Equator Principles, and finalised through a long process of consultations with bankers’ associations and development partners.

Sources: D’Orazio and Popoyan, 2019; Nepal Rastra Bank, 2018

Nationally Determined Contribution (NDC): Finance

<table>
<thead>
<tr>
<th>Conditionality</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment needs</td>
<td>USD 3.4 million domestic investments (unconditional), USD 25 million international investment estimated to achieve Nepal’s NDC targets</td>
</tr>
<tr>
<td>Actions</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>International market mechanisms</td>
<td>No contribution from international credits for the achievement of the target</td>
</tr>
</tbody>
</table>
ENDNOTES

For more detail on the sources and methodologies behind the calculation of the indicators displayed, please download the Technical Note at: www.climate-transparency.org/g20-climate-performance/g20report2020

1 “Land use” emissions is used here to refer to land use, land-use change and forestry (LULUCF). The Climate Action Tracker (CAT) derives historical LULUCF emissions from the UNFCCC Common Reporting Format (CRF) reporting tables converted to the categories from the IPCC 1996 guidelines, in particular separating Agriculture from LULUCF, which under the new IPCC 2006 Guidelines is integrated into Agriculture, Forestry, and Other Land Use (AFOLU).

2 The 1.5°C fair-share ranges for 2030 and 2050 are drawn from the CAT, which compiles a wide range of perspectives on what is considered fair, including considerations such as responsibility, capability, and equality. Countries with 1.5°C ‘fair-share’ ranges reaching below zero, particularly between 2030 and 2050, are expected to achieve such strong reductions by domestic emissions reductions, supplemented by contributions to global emissions reduction efforts via, for example, international finance. On a global scale, negative emissions technologies are expected to play a role from the 2030s onwards, compensating for remaining positive emissions. The CAT’s evaluation of NDCs shows the resulting temperature outcomes if all other governments were to put forward emissions reduction commitments with the same relative ambition level.

3 In order to maintain comparability across all countries, this report utilises the PRIMAP year of 2017. However, note that Common Reporting Format (CRF) data is available for countries which have recently updated GHG inventories.

4 The Decarbonisation ratings appear only in the CTR profiles for the G20 countries, on which this profile is based.

BIBLIOGRAPHY

GRENoble, France. https://www.enerdata.net/research/energy-market-data-co2-emissions-database.html

———. (2020). Nepal Provincial Climate Change Risk Assessment at the global average warming of 1.5°C, 2°C and 3°C.

